MA 110-91 $\S 3.2-5.4,7.0-7.2$	TeSt \#2	score	Name: $\frac{18 \text { November } 2000}{}$

1. If a pair of fair coins is flipped, what is the probablility of getting exactly one heads? (11 points)
2. Calculate the probability of being dealt a flush (all cards having the same suit) in a standard 52-card deck. (11 points)
3. We play a dice game by rolling a pair of dice. If the sum of the dice is evenly divisible by 5 , I pay you $\$ 10$; otherwise, you pay me $\$ 2$. What are your expected winnings per game? (11 points)
4. Draw a relative frequence diagram for the dataset $\{0.1,0.5,1.2,1.5,0.9,1.3,1.7,0.4$, $0.7,1.3,1.7\}$. Use 4 data groups each of width 0.5 starting at 0 . (11 points)

5. Find the mean and standard deviation of the sample $\{1,4,5,4,3,6\}$ (11 points)
6. A population is normally distributed with mean 36.8 and standard deviation 5.5. Find the probability $p(x<40.0)$. (11 points)
7. Determine the margin of error for a 95% confidence level in a survey of 500 randomly chosen people. (11 points)
8. Suppose that 10% of math majors switch to statistics each year and that 20% of stat majors switch to math each year. Form the transition matrix for this Markov chain. If 50% of the students in the Department of Mathematics and Statistics are math majors and 50% are stat majors, what will the percentages of majors be in each subject in two years? (12 points)
9. Rewrite the system in matrix form. Then use row operations to put the first column in 1-0-0 form (you don't need to go any further). (11 points)

$$
\begin{array}{r}
x+y+2 z=1 \\
2 x-y+z=2 \\
-2 x+3 y-z=0
\end{array}
$$

