

1. Three coins are tossed. Write out the sample space S of all outcomes. Find the probability that 2 coins are heads and one is tails. Next, find the probability that exactly two of the three coins match. (11 points)
2. Find the probability of being dealt four-of-a-kind in a five-card hand. (11 points)
3. If two dice are rolled, find the probability that at least one is a 6 . Then do the same problem, but with three dice, i.e., find the probability that at least one of the three dice is a 6. (Hint: consider the complementary event.) (11 points)
4. Let's play a dice game where you roll two dice. If the sum is 5 or less, I pay you $\$ 7$. If the sum $6,7,8$, or 9 , you pay me $\$ 5$. If the sum is 10 or greater, I will again pay you $\$ 7$. Compute the expected value of this game (from your perspective). Would this be a profitable game for you to play repeatedly? (11 points)
5. A coin is flipped; then another coin is flipped. Let A denote the event that the first coin lands heads. Let B denote the event that exactly one coin lands heads. Are A and B mutually exclusive? Are A and B independent? Explain. (11 points)
6. Three coins are tossed. Find the probability that all three coins are heads given that at least two of the three coins are heads. (11 points)
7. Draw a relative frequence histogram for the dataset $\{1.1,1.5,2.3,5.0,9.1,3.2,7.4,3.9,7.1$, $3.2,7.2,8.6,2.2,3.7,5.9,5.1,8.1,9.9\}$. Use 5 data groups each of width 2 starting at 0 (so that $0 \leq x<2$ describes the first category). (11 points)

8. Calculate the mean, median, and mode of the data set $S=\{3,2,5,3,7,4,1,4,2,5,3,6\}$ (11 points)
9. Calculate the sample variance and sample standard deviation for the data set $S=\{22,26,21,23\}$. (11 points)
