MA 120-12 §1.1-4.2	TeSt \#1		Name:

1. You leave home and drive toward the mall which is about 10 miles away. When you are about halfway there, you have a flat tire. It takes a while to get the tire changed, after which you return home to clean up. Then you drive to the mall uneventfully.
Let $d(t)$ denote the distance you are from your home at time t Sketch a graph of $d(t)$ the reflects the given information. (9 points)

2. How much money should you deposit now in an account so that 10 years of continuously compounded interest at 6% per year you will have a total of $\$ 10,000$? (8 points)
3. If the world population increases at a rate of 2% per year, how long will it take to double? (You may use the "rule of 70 " for an approximate value; be more accurate if you like.) (6 points)
4. A function $f(x)$ is shown. Sketch a graph of $f^{\prime}(x)$ on the same set of axes. Indicate the local extrema (maxes and mins) and inflection points on the graph of f if there are any. (9 points)

5. A mutual fund currently has a net asset value of $\$ 80$ per share. Its value per share has been increasing recently at a rate of $\$ 0.55$ per day. Let $f(t)$ denote the value per share t days from now. Express the information given in this problem in terms of f and f^{\prime}. Then assume the growth rate remains constant and estimate $f(12)$. (9 points)
6. Sketch a graph of a continuous function f with the the following properties: (9 points)
(a) $f^{\prime}(x)<0$ on $[-3,-1]$ and on $[2,3]$
(b) $f^{\prime}(x)>0$ on $[-1,2]$
(c) $f^{\prime \prime}(x)>0$ on $[-2,0]$
(d) $f^{\prime \prime}(x)<0$ on $[-3,-2]$ and on $[0,3]$
(e) $f(0)=2$

7. Let $f(t)$ denote the value of a stock at time t. Explain in terms of the signs of f^{\prime} and $f^{\prime \prime}$ what it means if "the value of the stock price has been rising lately but is beginning to level off." (8 points)
8. Let $M C(q)$ and $M R(q)$ denote the marginal cost and marginal revenue functions, respectively, where q is the quantity of items produced. If $C(100)>R(100)$ and $M C(100)>$ $M R(100)$, would you recommend increasing q or decreasing q in an effort to move toward profitability? Explain. (8 points)
9. Find an equation of the tangent line to the graph of $y=x^{3}-3 x^{2}+1$ when $x=1$. (8 points)
10. Find the derivative of the following functions. (6 points each)
(a) $f(x)=e^{x^{2}+1}$
(b) $f(x)=\left(x^{2}+3 x-10\right)^{8}$
(c) $f(x)=x^{2} e^{x}$
11. Let $f(x)=x^{4}-8 x^{3}+16 x^{2}+101$. Show that f has a critical point at $x=2$. Then apply the second derivative test to the critical point (show the details). What do you conclude? Explain. (8 points)
