MA 126-02 §5.4–7.4, App. F	Test #1	score	Name: 29 June 2000	
tion f . Let $g(x)$ what values of x	1. The graph to the right shows a function <i>f</i> . Let $g(x) = \int_0^x f(x) dx$. At what values of <i>x</i> does <i>g</i> have relative extrema? inflection points? Explain.			

→*X*

6

4 5

3

-1 -2

2. Evaluate the following integrals by hand. Show your work. Check your answers using your calculator if you like. *(8 points each)*

(a)
$$\int \frac{x+1}{\sqrt{x^2+2x}} \, dx$$

(8 points)

(b)
$$\int_0^{\frac{\pi}{2}} x \cos(2x) \, dx$$

3. Calculate the improper integral $\int_0^1 \frac{1}{\sqrt{x-1}} dx$ by hand. Be sure to show all the details. *(8 points)*

4. Approximate the area enclosed by the curves $y = 16 - x^2$ and $y = e^x$ correct to two decimal places. *(8 points)*

5. Find the volume of the solid obtained by rotating about the *x*-axis the area contained between the curves $y = \sqrt{x}$ and $y = \frac{1}{2}x$. Use your calculator, but give the exact answer. (9 points)

6. Find the exact arclength of one arch of the cycloid given by $x = t - \sin t$ and $y = 1 - \cos t$ from as *t* goes from 0 to 2π . (9 points)

7. Let $f(x) = 16 - x^2$ and let f_{ave} denote the average value of f on the interval [0,4]. Find a number $c \in [0,4]$ so that $f(c) = f_{ave}$. (9 points)

8. Find the centroid of the region in the first quadrant of the *xy*-plane that lies under the curve $y = \sin^2 x$ from x = 0 to $x = \pi$. (9 points)

9. Your calculator can compute $\int \frac{1}{x^3 - x^2 + x - 1}$. Explain step-by-step what your calculator does to compute this integral. Be sure to mention partial fractions in your explanation. (8 points)

10. Find the family of solutions for the differential equation $y' = \frac{x^2}{1 - y^2}$. Then find the equation of the solution that contains the point $(0, \frac{1}{2})$. Sketch a graph of this solution. *(8 points)*

11. Find the family of orthogonal trajectories for the family of curves given by $x^2 + 2y^2 = k^2$. Sketch the graph of a few curves from each family on one set of axes. (8 points)