Review Problems for Test #2
MA 126 — Summer 2000

1. Determine if the following sequences

converge or diverge.
find the limit.

If they converge,
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2. Use the integral test to determine if the

series i ! converges
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. Determine if the following series con-
verge or diverge. Explain.
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. Determine if the following series con-
verge absolutely, converge conditionally,
or diverge. Explain fully.
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. Determine the interval of convergence

for the power series.

. Write the power series representation for

and state its inter-

X
val of convergence. Differentiate this
power series term by term to deduce the
power series representation for the func-

the function
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Beginning with the Maclaurin series for
cosx, find the Maclaurin series for
x cos(2x).

. The hyperbolic sine function is defined

eX _ p—X
as sinhx = . Find the Maclau-

rin series for sinh x.

. How many terms of the Maclaurin series

for e* would you have to sum in order for
the partial sum to approximate the value
of el correct to 8 decimal places?

Use the binomial series to find the
Maclaurin series for v4 + x and deter-
mine the radius of convergence. Then
use a partial sum of the series to esti-
mate the value of /4.1 correct to 4 dec-
imal places. Explain how you know how
many terms in the series to use.



