- 1. Evaluate $\iint_R y \sin^2 x \, dA$ where *R* is the region in the first and second quadrants of the *xy*-plane below the curve $y = \cos x$ between $x = -\frac{\pi}{2}$ and $x = \frac{\pi}{2}$. (16 points)
- 2. Find the volume of the solid in 3-space which is below the surface z = xy and above the region in the xy-plane bounded by the curves $y = \sqrt{x}$ and $y = x^2$. (16 points)
- 3. Find the moment of inertia about the *z*-axis of a sphere of radius 1 centered at the origin if the mass density at any point in the ball is given by $\rho(x, y, z) = \sqrt{x^2 + y^2}$. (16 points)
- 4. A square in the xy-plane with vertices (2, 2), (4, 0), (6, 2), and (4, 4) is revolved about the *y*-axis. Find the volume of the resulting solid of revolution. (*16 points*)
- 5. Find the volume of the solid in 3-space under the surface $z = 16 x^2 y^2$ and above the *xy*-plane. (*16 points*)
- 6. Let $\vec{r}(t) = (3\cos(2t), 3\sin(2t), 4t)$ for $0 \le t \le 2\pi$.
 - (a) Compute the arclength of the curve from t = 0 to $t = \pi$. (10 points)
 - (b) Show that the acceleration vector is always parallel to, but in the opposite direction as, the first two components of the location vector $\vec{r}(t)$. (10 points)