MA 237-02 §1.5-2.1	QuiZ \#3		score

Instructions: Work the following problems on your own paper and turn them in no later than Tuesday morning 9/25/01.

1. Find a 3×4 matrix A so that $A X=B$ is solvable if and only if B belongs to the plane in \mathbb{R}^{3} spanned by the vectors $[1,0,1]^{t}$ and $[1,1,1]^{t}$. Choose the matrix so that none of its entries are 0 . As a check on your work, choose a specfic B not on this plane and show (by row reduction) that the system $A X=B$ is inconsistent. (5 points)
2. Two linear algebra students are comparing answers the got for the solution to a linear system of equations. One student got

$$
[1,-1,1]^{t}+s[1,1,1]^{t}+t[2,1,2]^{t}
$$

while the other got

$$
[4,1,4]^{t}+s[3,2,3]^{t}+t[1,0,1]^{t}
$$

Are these two answers incompatible? In other words, could they both be right, or is at least one definitely wrong? Explain. (5 points)
3. Explain why any four vectors in \mathbb{R}^{3} must be dependent. (5 points)
4. Determine if the following set of 2×2 matrices is an independent set in $M(2,2)$. Explain. (5 points)

$$
\left\{\left[\begin{array}{ll}
3 & 0 \\
2 & 1
\end{array}\right],\left[\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right],\left[\begin{array}{cc}
2 & -2 \\
1 & 1
\end{array}\right],\left[\begin{array}{cc}
2 & -2 \\
1 & 0
\end{array}\right]\right\}
$$

