Name: \qquad
score
19 November 2001

Instructions: Answers to question 7 may be written on this page. All other problems should be worked on a separate sheet.

1. Find a matrix that induces a transformation from \mathbb{R}^{2} to itself that sends the standard unit square in the first quadrant (with vertices $(0,0),(1,0),(1,1)$, and $(0,1))$ to the parallelogram with vertices $(0,0),(2,-1),(1,-2)$, and $(-1,-1)$. How many such matrices are possible? (10 points)
2. Give an example of two matrices A and B such that $A B \neq B A$, if such an example exists. (10 points)
3. Use the augmented matrix method to find (by hand) the inverse of the following matrix. (10 points)

$$
\left[\begin{array}{lll}
1 & 1 & 1 \\
2 & 1 & 2 \\
2 & 2 & 1
\end{array}\right]
$$

4. Two $n \times n$ matrices A and B are called similar if there exists an invertible matrix Q such that $A=Q B Q^{-1}$. Prove that similar matrices always have the same determinant. (10 points)
5. Find the projection of the vector $[1,2,3]^{t} \in \mathbb{R}^{3}$ onto the subspace of \mathbb{R}^{3} spanned by the two vectors $[2,1,2]^{t}$ and $[1,2,1]^{t}$. (10 points)
6. Show that the vector X is an eigenvector for the matrix A and determine the corresponding eigenvalue. (10 points)

$$
A=\left[\begin{array}{lll}
1 & 1 & 1 \\
2 & 1 & 2 \\
1 & 2 & 1
\end{array}\right] \quad X=\left[\begin{array}{l}
5 \\
8 \\
7
\end{array}\right]
$$

7. For each of the following, answer True if the given statement in always true. Otherwise, answer False. (5 points each)
(a) For the vector $[1,2,3]^{t} \in \mathbb{R}^{3}$, its coordinates in the basis $[2,1,0]^{t},[1,0,4]^{t},[1,-1,0]^{t}$ are $[1,1,-2]^{t}$. \qquad
(b) No linear transformations from \mathbb{R}^{4} to \mathbb{R}^{3} are one-to-one.
(c) All linear transformations from \mathbb{R}^{3} to \mathbb{R}^{4} are one-to-one.
(d) A linear transformation from \mathbb{R}^{n} to \mathbb{R}^{n} is one-to-one if and only if it is onto.
(e) If A^{\prime} is obtained from a square matrix A by replacing all of the entries of A by their negatives, then $\operatorname{det}\left(A^{\prime}\right)=-\operatorname{det}(A)$. \qquad
(f) For an invertible matrix $A, \operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)}$. \qquad
8. Short Answer (5 points each)
(a) Suppose A is a 5×5 matrix and that the dimension of the nullspace of A is 2 . Find the dimension of the image of the transformation. Briefly explain.
(b) Let A be a 3×4 matrix and B a 4×3 matrix. For the transformations determined by the matrix products $A B$ and $B A$, describe whether or not either can be one-to-one or onto.
