MA 237-02 §3.1 - 6.1

Test #2

score

Name: _____

19 November 2001

INSTRUCTIONS: Answers to question 7 may be written on this page. All other problems should be worked on a separate sheet.

- 1. Find a matrix that induces a transformation from \mathbb{R}^2 to itself that sends the standard unit square in the first quadrant (with vertices (0,0), (1,0), (1,1), and (0,1)) to the parallelogram with vertices (0,0), (2,-1), (1,-2), and (-1,-1). How many such matrices are possible? (10 points)
- 2. Give an example of two matrices A and B such that $AB \neq BA$, if such an example exists. (10 points)
- 3. Use the augmented matrix method to find (by hand) the inverse of the following matrix. (10 points)

$$\begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$$

- 4. Two $n \times n$ matrices A and B are called *similar* if there exists an invertible matrix Q such that $A = QBQ^{-1}$. Prove that similar matrices always have the same determinant. (10 points)
- 5. Find the projection of the vector $[1,2,3]^t \in \mathbb{R}^3$ onto the subspace of \mathbb{R}^3 spanned by the two vectors $[2,1,2]^t$ and $[1,2,1]^t$. (10 points)
- 6. Show that the vector X is an eigenvector for the matrix A and determine the corresponding eigenvalue. (10 points)

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 2 \\ 1 & 2 & 1 \end{bmatrix} \qquad X = \begin{bmatrix} 5 \\ 8 \\ 7 \end{bmatrix}$$

- 7. For each of the following, answer True if the given statement in always true. Otherwise, answer FALSE. (5 points each)
 - (a) For the vector $[1,2,3]^t \in \mathbb{R}^3$, its coordinates in the basis $[2,1,0]^t$, $[1,0,4]^t$, $[1,-1,0]^t$ are $[1,1,-2]^t$.
 - (b) No linear transformations from \mathbb{R}^4 to \mathbb{R}^3 are one-to-one. ______
 - (c) All linear transformations from \mathbb{R}^3 to \mathbb{R}^4 are one-to-one.
 - (d) A linear transformation from \mathbb{R}^n to \mathbb{R}^n is one-to-one if and only if it is onto.
 - (e) If A' is obtained from a square matrix A by replacing all of the entries of A by their negatives, then det(A') = -det(A).
 - (f) For an invertible matrix A, $det(A^{-1}) = \frac{1}{det(A)}$.
- 8. Short Answer (5 points each)
 - (a) Suppose A is a 5×5 matrix and that the dimension of the nullspace of A is 2. Find the dimension of the image of the transformation. Briefly explain.
 - (b) Let A be a 3×4 matrix and B a 4×3 matrix. For the transformations determined by the matrix products AB and BA, describe whether or not either can be one-to-one or onto.