MA 237-02
§3.1-6.1
Name: \qquad
score
19 November 2001
Instructions: Answers to question 7 may be written on this page. All other problems should be worked on a separate sheet.

1. Find a matrix that induces a transformation from \mathbb{R}^{2} to itself that sends the standard unit square in the first quadrant (with vertices $(0,0),(1,0),(1,1)$, and $(0,1))$ to the parallelogram with vertices $(0,0),(2,-1),(1,-2)$, and $(-1,-1)$. How many such matrices are possible? (10 points)

Solution: There are two such matrices obtained by examining where the standard basis elements get sent:

$$
\left[\begin{array}{cc}
2 & -1 \\
-1 & -1
\end{array}\right] \quad \text { and } \quad\left[\begin{array}{cc}
-1 & 2 \\
-1 & -1
\end{array}\right]
$$

2. Give an example of two matrices A and B such that $A B \neq B A$, if such an example exists. (10 points)

Solution: Matrix multiplicaiton is not, in general, commutative. You can choose a pair of 2×2 matrices to illustruate this, e.g., let

$$
A=\left[\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right] \quad \text { and } B=\left[\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right]
$$

3. Use the augmented matrix method to find (by hand) the inverse of the following matrix. (10 points)

$$
\left[\begin{array}{lll}
1 & 1 & 1 \\
2 & 1 & 2 \\
2 & 2 & 1
\end{array}\right]
$$

Solution: The inverse of the given matrix is

$$
\left[\begin{array}{ccc}
-3 & 1 & 1 \\
2 & -1 & 0 \\
2 & 0 & -1
\end{array}\right]
$$

4. Two $n \times n$ matrices A and B are called similar if there exists an invertible matrix Q such that $A=Q B Q^{-1}$. Prove that similar matrices always have the same determinant. (10 points)

Solution: $\operatorname{det}(A)=\operatorname{det}\left(Q B Q^{-1}\right)=\operatorname{det}(Q) \operatorname{det}(B) \operatorname{det}\left(Q^{-1}\right)=\operatorname{det}(Q) \operatorname{det}\left(Q^{-1}\right) \operatorname{det}(B)=\operatorname{det}(Q) \frac{1}{\operatorname{det}(Q)} \operatorname{det}(B)=$ $\operatorname{det}(B)$
5. Find the projection of the vector $[1,2,3]^{t} \in \mathbb{R}^{3}$ onto the subspace of \mathbb{R}^{3} spanned by the two vectors $[2,1,2]^{t}$ and $[1,2,1]^{t}$. (10 points)

Solution: Let $\mathcal{W}=\operatorname{span}\left(W_{1}, W_{2}\right)$ where W_{1} and W_{2} are the two given spanning vectors. Using the GramSchmidt method, we find an orthogonal basis $\left\{Q_{1}, Q_{2}\right\}$ for \mathcal{W} by setting $Q_{1}=W_{1}$ and $Q_{2}=W_{1}-\frac{W_{2} \cdot W_{1}}{W_{1} \cdot W_{1}} \cdot W_{1}=$ $\left[-\frac{1}{3}, \frac{4}{3},-\frac{1}{3}\right]^{t}$. Then we calculate $\operatorname{proj}_{W} X=\frac{X \cdot Q_{1}}{Q_{1} \cdot Q_{1}} \cdot Q_{1}+\frac{X \cdot Q_{2}}{Q_{2} \cdot Q_{2}} \cdot Q_{2}=[2,2,2]^{t}$
6. Show that the vector X is an eigenvector for the matrix A and determine the corresponding eigenvalue. (10 points)

$$
A=\left[\begin{array}{lll}
1 & 1 & 1 \\
2 & 1 & 2 \\
1 & 2 & 1
\end{array}\right] \quad X=\left[\begin{array}{l}
5 \\
8 \\
7
\end{array}\right]
$$

Solution: A check shows that $A X=4 X$, so X is an eigenvector with corresponding eigenvalue 4 .
7. For each of the following, answer True if the given statement in always true. Otherwise, answer FALSE. (5 points each)
(a) For the vector $[1,2,3]^{t} \in \mathbb{R}^{3}$, its coordinates in the basis $[2,1,0]^{t},[1,0,4]^{t},[1,-1,0]^{t}$ are $[1,1,-2]^{t}$.

Solution: A check shows that

$$
\left[\begin{array}{ccc}
2 & 1 & 1 \\
1 & 0 & -1 \\
0 & 4 & 0
\end{array}\right]\left[\begin{array}{c}
1 \\
1 \\
-2
\end{array}\right] \neq\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]
$$

so the statement is False.
(b) No linear transformations from \mathbb{R}^{4} to \mathbb{R}^{3} are one-to-one.

Solution: True since the nullspace for any such transformation has dimension 1 or larger.
(c) All linear transformations from \mathbb{R}^{3} to \mathbb{R}^{4} are one-to-one.

Solution: FALSE, since the zero transformation (induced by the 4×3 matrix of zeros) is not one-to-one.
(d) A linear transformation from \mathbb{R}^{n} to \mathbb{R}^{n} is one-to-one if and only if it is onto. \qquad
Solution: True by the Inverse Theorem on page 167 of the text.
(e) If A^{\prime} is obtained from a square matrix A by replacing all of the entries of A by their negatives, then $\operatorname{det}\left(A^{\prime}\right)=-\operatorname{det}(A)$. \qquad
Solution: FALSE; since if A has an odd number of rows $\operatorname{det}\left(A^{\prime}\right)=-\operatorname{det} A$. The correct general formula would be $\operatorname{det}\left(A^{\prime}\right)=(-1)^{n} \operatorname{det} A$ where n is the $\operatorname{dimension~of~} A$.
(f) For an invertible matrix $A, \operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)}$.

Solution: True by assigned Exercise 12 on page 288.
8. Short Answer (5 points each)
(a) Suppose A is a 5×5 matrix and that the dimension of the nullspace of A is 2 . Find the dimension of the image of the transformation. Briefly explain.

Solution: The rank of A is $3(5-2)$, and that is the dimension of the image of the transformation.
(b) Let A be a 3×4 matrix and B a 4×3 matrix. For the transformations determined by the matrix products $A B$ and $B A$, describe whether or not either can be one-to-one or onto.

Solution: The product $A B$ is a 3×3 matrix that will induce a transformation from \mathbb{R}^{3} to \mathbb{R}^{3}. As such, $A B$ might be both 1-1 and onto (for example, if $A B$ is the identity matrix), or $A B$ might be neither 1-1 nor onto. Those are the only two possibilities. $B A$, on the other hand, is a 4×4 matrix that will induce a transformation from \mathbb{R}^{4} to \mathbb{R}^{4}. From the diagram below, you see that the induced transformation cannot be 1-1 since it begins by going down a dimension. Thus $T_{B A}$ cannot be onto either since such transformation are 1-1 if and only they are onto.

