MA 237-02	Test #2		Name:
§3.1 - 6.1		score	19 November 2001

INSTRUCTIONS: Answers to question 7 may be written on this page. All other problems should be worked on a separate sheet.

1. Find a matrix that induces a transformation from \mathbb{R}^2 to itself that sends the standard unit square in the first quadrant (with vertices (0,0), (1,0), (1,1), and (0,1)) to the parallelogram with vertices (0,0), (2,-1), (1,-2), and (-1,-1). How many such matrices are possible? *(10 points)*

Solution: There are two such matrices obtained by examining where the standard basis elements get sent:

$$\begin{bmatrix} 2 & -1 \\ -1 & -1 \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} -1 & 2 \\ -1 & -1 \end{bmatrix}$$

2. Give an example of two matrices *A* and *B* such that $AB \neq BA$, if such an example exists. (10 points)

Solution: Matrix multiplication is not, in general, commutative. You can choose a pair of 2×2 matrices to illustruate this, e.g., let

$$A = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$$

3. Use the augmented matrix method to find (by hand) the inverse of the following matrix. (10 points)

$$\begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$$

Solution: The inverse of the given matrix is

$$\begin{bmatrix} -3 & 1 & 1 \\ 2 & -1 & 0 \\ 2 & 0 & -1 \end{bmatrix}$$

4. Two $n \times n$ matrices *A* and *B* are called *similar* if there exists an invertible matrix *Q* such that $A = QBQ^{-1}$. Prove that similar matrices always have the same determinant. (10 points)

Solution: $det(A) = det(QBQ^{-1}) = det(Q) det(B) det(Q^{-1}) = det(Q) det(Q^{-1}) det(B) = det(Q) \frac{1}{det(Q)} det(B) = det(B)$

5. Find the projection of the vector $[1,2,3]^t \in \mathbb{R}^3$ onto the subspace of \mathbb{R}^3 spanned by the two vectors $[2,1,2]^t$ and $[1,2,1]^t$. (10 points)

Solution: Let $\mathcal{W} = \operatorname{span}(W_1, W_2)$ where W_1 and W_2 are the two given spanning vectors. Using the Gram-Schmidt method, we find an orthogonal basis $\{Q_1, Q_2\}$ for \mathcal{W} by setting $Q_1 = W_1$ and $Q_2 = W_1 - \frac{W_2 \cdot W_1}{W_1 \cdot W_1} \cdot W_1 = [-\frac{1}{3}, \frac{4}{3}, -\frac{1}{3}]^t$. Then we calculate $\operatorname{proj}_{\mathcal{W}} X = \frac{X \cdot Q_1}{Q_1 \cdot Q_1} \cdot Q_1 + \frac{X \cdot Q_2}{Q_2 \cdot Q_2} \cdot Q_2 = [2, 2, 2]^t$

6. Show that the vector *X* is an eigenvector for the matrix *A* and determine the corresponding eigenvalue. (*10 points*)

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 2 \\ 1 & 2 & 1 \end{bmatrix} \qquad X = \begin{bmatrix} 5 \\ 8 \\ 7 \end{bmatrix}$$

Solution: A check shows that AX = 4X, so X is an eigenvector with corresponding eigenvalue 4.

- 7. For each of the following, answer TRUE if the given statement in always true. Otherwise, answer FALSE. (5 points each)
 - (a) For the vector $[1,2,3]^t \in \mathbb{R}^3$, its coordinates in the basis $[2,1,0]^t$, $[1,0,4]^t$, $[1,-1,0]^t$ are $[1,1,-2]^t$.

Solution: A check shows that

2	1	1]	[1]		1	
1	0	$\begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$	1	¥	2	
0	4	0	2		3	

so the statement is FALSE.

(b) No linear transformations from \mathbb{R}^4 to \mathbb{R}^3 are one-to-one.

Solution: TRUE since the nullspace for any such transformation has dimension 1 or larger.

(c) All linear transformations from \mathbb{R}^3 to \mathbb{R}^4 are one-to-one.

Solution: FALSE, since the zero transformation (induced by the 4×3 matrix of zeros) is not one-to-one.

(d) A linear transformation from \mathbb{R}^n to \mathbb{R}^n is one-to-one if and only if it is onto.

Solution: TRUE by the Inverse Theorem on page 167 of the text.

(e) If A' is obtained from a square matrix A by replacing all of the entries of A by their negatives, then det(A') = -det(A).

Solution: FALSE; since if *A* has an odd number of rows det(A') = -det A. The correct general formula would be $det(A') = (-1)^n det A$ where *n* is the dimension of *A*.

(f) For an invertible matrix A, $det(A^{-1}) = \frac{1}{det(A)}$.

Solution: TRUE by assigned Exercise 12 on page 288.

- 8. Short Answer (5 points each)
 - (a) Suppose *A* is a 5×5 matrix and that the dimension of the nullspace of *A* is 2. Find the dimension of the image of the transformation. Briefly explain.

Solution: The rank of *A* is 3(5-2), and that is the dimension of the image of the transformation.

(b) Let *A* be a 3×4 matrix and *B* a 4×3 matrix. For the transformations determined by the matrix products *AB* and *BA*, describe whether or not either can be one-to-one or onto.

Solution: The product *AB* is a 3×3 matrix that will induce a transformation from \mathbb{R}^3 to \mathbb{R}^3 . As such, *AB* might be both 1-1 and onto (for example, if *AB* is the identity matrix), or *AB* might be neither 1-1 nor onto. Those are the only two possibilities. *BA*, on the other hand, is a 4×4 matrix that will induce a transformation from \mathbb{R}^4 to \mathbb{R}^4 . From the diagram below, you see that the induced transformation cannot be 1-1 since it begins by going down a dimension. Thus T_{BA} cannot be onto either since such transformation are 1-1 if and only they are onto.

$$\mathbb{R}^{3} \xrightarrow{T_{AB}} \mathbb{R}^{3} \xrightarrow{\mathbb{R}^{4}} \mathbb{R}^{3} \qquad \mathbb{R}^{4} \xrightarrow{T_{A}} \mathbb{R}^{3} \xrightarrow{T_{B}} \mathbb{R}^{4}$$