MA 237-02 §1.5-2.2	QuíZ \#3		score

1. Create a 2×3 matrix A so that the equation $A X=B$ is solvable if and only if B belongs to the line spanned by the vector $[1,2]^{t}$. Choose the matrix A so that no two of its entries are the same. (5 points)
2. Calculate the nullspace of the given matrix. Express your answer as a span. (5 points)

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
3 & 2 & 1
\end{array}\right]
$$

3. Your job is to determine if the vectors $[1,2,3]^{t},[1,0,1]^{t}$, and $[2,1,2]$ are independent. You are given that the following matrices are row-equivalent. Use this information and explain your answer. (5 points)

$$
\left[\begin{array}{lll}
1 & 1 & 2 \\
2 & 0 & 1 \\
3 & 1 & 2
\end{array}\right] \rightarrow\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

4. Do the vectors in the previous problem form a basis for \mathbb{R}^{3}. Explain. (5 points)
