MA 237-02 §1.5 - 2.2 Quiz #3	score	Name: 14 February 2002
---------------------------------	-------	---------------------------

1. Create a 2×3 matrix *A* so that the equation AX = B is solvable if and only if *B* belongs to the line spanned by the vector $[1, 2]^t$. Choose the matrix *A* so that no two of its entries are the same. (5 points)

2. Calculate the nullspace of the given matrix. Express your answer as a span. (5 points)

A =	1	2	3]
	3	2	1

3. Your job is to determine if the vectors $[1, 2, 3]^t$, $[1, 0, 1]^t$, and [2, 1, 2] are independent. You are given that the following matrices are row-equivalent. Use this information and explain your answer. *(5 points)*

$$\begin{bmatrix} 1 & 1 & 2 \\ 2 & 0 & 1 \\ 3 & 1 & 2 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

4. Do the vectors in the previous problem form a basis for \mathbb{R}^3 . Explain. (5 points)