Summary of Definitions and Theorems

MA 237 - Linear Algebra

1 Systems of Linear Equations

1.1 Vectors

Definition 1 In \mathbb{R}^{2}, if $A=\left(x_{1}, y_{1}\right)$ and $B=\left(x_{2}, y_{2}\right)$, the the dot product of A and B is $A \cdot B=$ $x_{1} x_{2}+y_{1} y_{2}$.
Theorem 1 (page 10) Two vectors A and B in \mathbb{R}^{2} are perpendicular if and only if $A \cdot B=0$.

1.2 The Vector Space of $m \times n$ Matrices

Definition 2 (page 20) A non-empty set \mathcal{V} that has operations of addition (+) and scalar multiplication (\cdot) defined on it is a vector space provided that

1. \mathcal{V} is closed under addition;
2. addition is commutative, i.e., $A_{1}+A_{2}=A_{2}+A_{1}$ for every $A_{1}, A_{2} \in \mathcal{V}$;
3. addition is associative, i.e., $\left(A_{1}+A_{2}\right)+A_{3}=A_{1}+\left(A_{2}+A_{3}\right)$ for every $A_{1}, A_{2}, A_{3} \in \mathcal{V}$;
4. \mathcal{V} possesses an additive identity element, denoted $\mathbf{0}$, with the property that $A+\mathbf{0}=\mathbf{A}$ for every $A \in \mathcal{V}$;
5. every element in \mathcal{V} has an additive inverse, i.e., for any $A \in \mathcal{V}$, there exists an element denoted $-A$ with the property that $A+(-A)=\mathbf{0}$;
6. \mathcal{V} is closed under scalar multiplication, i.e., for every $k \in \mathbb{R}$ and every $A \in \mathcal{V}, k \cdot A \in \mathcal{V}$;
7. $(k \cdot l) \cdot A=k \cdot(l \cdot A)$ for every $k, l \in \mathbb{R}$ and every $A \in \mathcal{V}$;
8. $k \cdot\left(A_{1}+A_{2}\right)=k \cdot A_{1}+c \cdot A_{2}$ for every $k \in \mathbb{R}$ and every $A_{1}, A_{2} \in \mathcal{V}$;
9. $(k+l) \cdot A=k \cdot A+l \cdot A$ for every $k, l \in \mathbb{R}$ and $A \in \mathcal{V}$;
10. $1 \cdot A=A$ for every $A \in \mathcal{V}$.

The main examples of vector spaces we have are \mathbb{R}^{n} and $M(m, n)$, the space of $m \times n$ matrices.
Definition 3 (pages 17-18) A set of vectors $\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$ is dependent if at least one of the vectors can be expressed as a linear combination of the others. Otherwise, the set is independent.

Definition 4 (page 19) Let \mathcal{V} be a vector space and let $\left\{A_{1}, A_{2}, \ldots, A_{n}\right\} \subseteq \mathcal{V}$. Then the span of the set $\left\{A_{1}, A_{2}, \ldots, A_{n}\right\} \subseteq \mathcal{V}$ is the set of all linear combinations of the vectors, i.e.,

$$
\operatorname{span}\left(\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}\right)=\left\{c_{1} \cdot A_{1}+c_{2} \cdot A_{2}+\cdots+c_{n} \cdot A_{n} \mid c_{i} \in \mathbb{R} \text { for all } i\right\}
$$

1.3 Systems of Linear Equations

The process of Gaussian elimination was described; representing solutions of linear systems parametrically using a translation vector and spanning vectors was discussed.

1.4 Gaussian Elimination

Elementary row operations were described, echelon form and reduced echelon form were defined. Row equivalence of matrices was defined.

Theorem 2 (page 45) Every matrix is row equivalent to a matrix in echelon form.
Theorem 3 (More Unknowns Theorem, page 49) A system of linear equations with more unknowns than equations will either fail to have any solutions or will have an infinite number of solutions.

1.5 Column Space and Nullspace

Definition 5 (page 59) The column space of a matrix A is the span of the columns of A (thought of as individual column vectors).

Theorem 4 (page 59) A linear system is solvable if and only if the vector of constants belongs to the column space of the coefficient matrix.

Definition 6 (page 60) If \mathcal{V} is a vector space and $\varnothing \neq \mathcal{W} \subseteq \mathcal{V}, \mathcal{W}$ is a subspace of \mathcal{V} if \mathcal{W} is closed under all linear combinations, i.e., given any $X, Y \in \mathcal{W}$ and $k, l \in \mathbb{R}, k \cdot X+l \cdot Y \in \mathcal{W}$.

Note that the above definition is equivalent to saying that a non-empty subset \mathcal{W} of a vector space \mathcal{V} is a subspace if and only if \mathcal{W} is a vector space itself.

Theorem 5 (Translation Theorem, page 63) Let T be any solution to the system $A X=B$. Then Y satisfies this system if and only if $Y=T+Z$ where Z satisfies $A Z=\mathbf{0}$.

Definition 7 (page 64) The nullspace of an $m \times n$ matrix A is the set of solutions to the system of homogeneous equations $A X=\mathbf{0}$ where X is an $n \times 1$ column vector of variables.

Theorem 6 (page 66) A subspace of a vector space \mathcal{V} is a vector space under the addition and scalar multiplication operations inherited from \mathcal{V}.

2 Linear Independence and Dimension

2.1 The Test for Linear Independence

Theorem 7 (Test for Independence, page 82) A set of vectors $\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$ is independent if and only if the only solution to the equation $k_{1} A_{1}+k_{2} A_{2}+\cdots+k_{n} A_{n}=0$ is the zero solution (i.e., each $k_{i}=0$).

Theorem 8 (page 87) The pivot columns for a matrix A are the columns corresponding to the pivot variables in the system $\mathbf{A} \cdot \mathbf{X}=\mathbf{0}$. The pivot columns for A are independent and the nonpivot columns are linear combinations of them.

2.2 Dimension

Definition 8 The dimension of a vector space \mathcal{V} is the smallest number of elements necessary to span \mathcal{V}.

Definition 9 a basis for a vector space \mathcal{V} is a set of linearly independent elements that spans \mathcal{V}.
Theorem 9 (page 94) In an n-dimensional vector space, there can be at most n independent elements.
Theorem 10 (page 96) If a vector space is n-dimensional, then any set of n elements that spans the space must be independent.

Theorem 11 (page 97) If a vector space can be spanned by n independent elements, the it is n-dimensional.
Theorem 12 (Dimension Theorem, page 97) A vector space \mathcal{V} is n-dimensional if and only if it has a basis containing n elements. In this case, all bases contain n elements.

Theorem 13 (page 100) In an n-dimensional vector space \mathcal{V}, any set of n linearly independent elements spans \mathcal{V}.

Theorem 14 (page 100) In an n-dimensional space \mathcal{V}, any set of n elements that spans \mathcal{V} must be independend and any set of n independent elements must span \mathcal{V}.

2.3 Applications to Systems

Definition 10 (page 122) The row space of a matrix A is the span of the rows of A.
Theorem 15 (page 123) Let A and B be two row-equivalent matrices. Then A and B have the same row space.

Theorem 16 (Non-Zero Tows Theorem, page 124) The non-zero rows of any echelon form of a matrix A form a basis for the row space of A.

Definition 11 (page 125) The rank of a matrix A is the dimension of the row space. It is computable as the number of non-zero rows in an exhelon form of the matrix.

Theorem 17 (page 126) For any matrix A, the row space and the column space have the same diminsion. This common dimension is the rank of A.

Theorem 18 (Rank-Nullity page 127) For any matrixA, the rank of A plus the dimension of the nullspace of A is the total number of columns of A.

Theorem 19 (page 128) If a matrix A is placed in row-reduced echolon form, and the nullspace expressed as a span of the vectors corresponding to the free columns, then those spanning vectors are independent.

