Name: \qquad
score
18 April 2002

Instructions: Answers to question 8 may be written on this page. All other problems should be worked on a separate sheet.

1. Find the coordinates of the point $[-1,2]^{t}$ in the basis $\left\{[2,1]^{t},[1,1]^{t}\right\}$ for \mathbb{R}^{2}. Show how you do this. (10 points)
2. Give an example of a 2×3 matrix A so that the image of the induced transformation of A consists of the line $y=2 x$ in the plane. State the domain, range, dimension of the image, and dimensionn of the null space for such a transformation? Briefly explain. (10 points)
3. Give an example of two matrices A and B such that $(A B)^{t} \neq A^{t} B^{t}$ (show this), or state that such an example can't occur. (10 points)
4. Use the augmented matrix method to find (by hand) the inverse of the following matrix. (10 points)

$$
\left[\begin{array}{lll}
-1 & 3 & 1 \\
-1 & 2 & 1 \\
-1 & 0 & 2
\end{array}\right]
$$

5. Use the Gram-Schmidt process to convert the ordered basis $\left\{[1,1,1]^{t},[2,1,2]^{t},[1,-1,-1]^{t}\right\}$ into an orthogonal basis. Show your work. (10 points)
6. Calculate the characteristic polynomial for the given matrix and determine all of the eigenvalues. Show your work. You do not need to find any eigenvectors on this problem. (10 points)

$$
\left[\begin{array}{lll}
1 & 1 & 1 \\
2 & 1 & 2 \\
1 & 2 & 1
\end{array}\right]
$$

7. Since the matrix below is in triangular form, you know that $\lambda=2$ is an eigenvalue for the matrix. Determine the corresponding eigenspace by exhibiting an eigenvector (or collection of independent eigenvectors) that span(s) the eigenspace. Show your work. (10 points)

$$
\left[\begin{array}{ccc}
2 & 0 & 0 \\
0 & 2 & 0 \\
1 & 1 & -1
\end{array}\right]
$$

8. For each of the following, answer True if the given statement in always true. Otherwise, answer FALSE. (3 points each)
(a) Any subspace of \mathbb{R}^{n} has an orthogonal basis. \qquad
(b) For any invertible matrix $A,\left|A^{-1}\right|=\frac{1}{|A|}$.
(c) For any square matrices A and B of the same size, $|A B|=|B A|$. \qquad
(d) If a matrix B is obtained from an $n \times n$ matrix A by interchanging exactly two rows, then $|A|=|B|$. \qquad
(e) Any linear transformation from \mathbb{R}^{1} to \mathbb{R}^{2} is one-to-one.
(f) A square matrix with two identical columns has a determinant of 0 . \qquad
(g) A square matrix is invertible if and only if the associated linear transformation is onto.
(h) If A is a square matrix, and if $A X=B$ has no solutions for some vector B, then A is not invertible. \qquad
(i) If A is a 5×3 matrix and B is a 3×4, the transformation induced by the product matrix $A B$ is never one-to-one.
(j) If A is a 5×3 matrix and B is a 3×4, the transformation induced by the product matrix $A B$ is never onto.
