MA 237-02 §3.1 - 6.1 Test #2	score	Name:
--	-------	-------

INSTRUCTIONS: Answers to question 8 may be written on this page. All other problems should be worked on a separate sheet.

1. Find the coordinates of the point $[-1, 2]^t$ in the basis $\{[2, 1]^t, [1, 1]^t\}$ for \mathbb{R}^2 . Show how you do this. (10 points)

Solution: Form the matrix
$$Q = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$$
 and calculate $Q^{-1}X = \begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} -1 \\ 2 \end{bmatrix} = \begin{bmatrix} -3 \\ 5 \end{bmatrix}$.

2. Give an example of a 2×3 matrix *A* so that the image of the induced transformation of *A* consists of the line y = 2x in the plane. State the domain, range, dimension of the image, and dimension of the null space for such a transformation? Briefly explain. (*10 points*)

Solution: Since the range of a matrix transformation is equal to the span of the columns of the matrix, we just choose a 2×3 matrix in which the columns are all in the desired subspace (y = 2x). Examples, of such matrices are $\begin{bmatrix} 1 & 0 & 0 \\ 2 & 0 & 0 \end{bmatrix}$, $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \end{bmatrix}$, and $\begin{bmatrix} 1 & -1 & 3 \\ 2 & -4 & 6 \end{bmatrix}$. The domain of any such transformation is \mathbb{R}^3 , the dimension of the range or image is 1, and the dimension of the nullspace is 2.

3. Give an example of two matrices *A* and *B* such that $(AB)^t \neq A^tB^t$ (show this), or state that such an example can't occur. (*10 points*)

Solution: You can pick nearly any pair of 2×2 matrices to show this.

4. Use the augmented matrix method to find (by hand) the inverse of the following matrix. (10 points)

$$\begin{bmatrix} -1 & 3 & 1 \\ -1 & 2 & 1 \\ -1 & 0 & 2 \end{bmatrix}$$

Solution:

$\begin{bmatrix} -1 & 3 \\ -1 & 2 \\ -1 & 0 \end{bmatrix}$	$\begin{array}{cccc} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 2 & 0 & 0 \end{array}$	$\begin{bmatrix} 0\\0\\1 \end{bmatrix} \longrightarrow \begin{bmatrix} 1\\-1\\-1 \end{bmatrix}$	$ \begin{array}{ccc} -3 & -1 \\ 2 & 1 \\ 0 & 2 \end{array} $	$\begin{array}{cc} -1 & 0 \\ 0 & 1 \\ 0 & 0 \end{array}$	$ \begin{array}{c} 0\\0\\1 \end{array} \end{array} \longrightarrow \begin{bmatrix} 1 & -3\\0 & -1\\0 & -3 \end{bmatrix} $	$ \begin{bmatrix} -1 & -1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 1 & -1 & 0 & 1 \end{bmatrix} \longrightarrow $
$\begin{bmatrix} 1 & -3 \\ 0 & 1 \\ 0 & -3 \end{bmatrix}$	$egin{array}{ccc} -1 & -1 \ 0 & 1 \ 1 & -1 \end{array}$	$ \begin{bmatrix} 0 & 0 \\ -1 & 0 \\ 0 & 1 \end{bmatrix} \longrightarrow $	$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{bmatrix} 0\\0\\1 \end{bmatrix} \longrightarrow \begin{bmatrix} 1&0\\0&1\\0&0 \end{bmatrix}$	$\begin{bmatrix} 0 & 4 & -6 & 1 \\ 0 & 1 & -1 & 0 \\ 0 & 1 & 2 & -3 & 1 \end{bmatrix}$
So, $\begin{bmatrix} -1\\ -1\\ -1 \end{bmatrix}$	$ \begin{bmatrix} 3 & 1 \\ 2 & 1 \\ 0 & 2 \end{bmatrix}^{-1} $	$= \begin{bmatrix} 4 & -6 & 1 \\ 1 & -1 & 0 \\ 2 & -3 & 1 \end{bmatrix}$].			

Use the Gram-Schmidt process to convert the ordered basis {[1,1,1]^t, [2,1,2]^t, [1,−1,−1]^t} into an orthogonal basis. Show your work. (10 points)

Solution: To begin the process, let
$$A_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
, $A_2 = \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix}$, $A_3 = \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix}$ Set $Q_1 = A_1$. Then calculate $Q_2 = A_2 - A_3 = \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix}$

$$\frac{A_2 \cdot Q_1}{Q_1 \cdot Q_1} \cdot Q_1 = \begin{bmatrix} \frac{1}{3} \\ -\frac{2}{3} \\ \frac{1}{3} \end{bmatrix}$$
. For convenience, replace Q_2 with a parallel vector without the fractions: $Q_2 = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$.

Finally, calculate $Q_3 = A_3 - \frac{A_3 \cdot Q_1}{Q_1 \cdot Q_1} \cdot Q_1 - \frac{A_3 \cdot Q_2}{Q_2 \cdot Q_2} \cdot Q_2 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$.

6. Calculate the characteristic polynomial for the given matrix and determine all of the eigenvalues. Show your work. You do not need to find any eigenvectors on this problem. *(10 points)*

1	1	1
2	1	2
1	2	1

Solution: Compute the following determinant using any method, e.g., expanding along the first row.

$$\begin{vmatrix} 1-\lambda & 1 & 1\\ 2 & 1-\lambda & 2\\ 1 & 2 & 1-\lambda \end{vmatrix} = (1-\lambda) \begin{vmatrix} 1-\lambda & 2\\ 2 & 1-\lambda \end{vmatrix} - \begin{vmatrix} 2 & 2\\ 1 & 1-\lambda \end{vmatrix} + \begin{vmatrix} 2 & 1-\lambda\\ 1 & 2 \end{vmatrix} = (1-\lambda)((1-\lambda)^2 - 4) - (2(1-\lambda) - 2) + (4 - (1-\lambda)) = (1-\lambda)(-3 - 2\lambda + \lambda^2) - (-2\lambda) + (3 + \lambda) = (-\lambda)^3 + 3\lambda^2 + 4\lambda$$

7. Since the matrix below is in triangular form, you know that $\lambda = 2$ is an eigenvalue for the matrix. Determine the corresponding eigenspace by exhibiting an eigenvector (or collection of independent eigenvectors) that span(s) the eigenspace. Show your work. (*10 points*)

$$\begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 1 & 1 & -1 \end{bmatrix}$$

Solution: Solve the homogeneous system represented by the matrix for $\lambda = 2$. $\begin{bmatrix} 2 - \lambda & 0 & 0 \\ 0 & 2 - \lambda & 0 \\ 1 & 1 & -1 - \lambda \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 1 & -3 \end{bmatrix}$. This last matrix contains only the information that $x_1 + x_2 - 3x_3 = 0$, so $X = x_2 \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} 3 \\ 0 \\ 1 \end{bmatrix}$. So the eigenspace corresponding to $\lambda = 2$ is the span of the set $\left\{ \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 3 \\ 0 \\ 1 \end{bmatrix} \right\}$.

- 8. For each of the following, answer TRUE if the given statement in always true. Otherwise, answer FALSE. *(3 points each)*
 - (a) Any subspace of \mathbb{R}^n has an orthogonal basis.

Solution: TRUE; just take any basis and apply the Gram-Schmidt process.

(b) For any invertible matrix A, $|A^{-1}| = \frac{1}{|A|}$. Solution: TRUE, since $AA^{-1} = I$ so $|A| \cdot |A^{-1}| = 1$. (c) For any square matrices A and B of the same size, |AB| = |BA|.

Solution: TRUE, since $|AB| = |A| \cdot |B| = |B| \cdot |A| = |BA|$.

(d) If a matrix *B* is obtained from an $n \times n$ matrix *A* by interchanging exactly two rows, then |A| = |B|.

Solution: FALSE. Row interchanges negate the determinant.

(e) Any linear transformation from \mathbb{R}^1 to \mathbb{R}^2 is one-to-one.

Solution: FALSE, for example the transformation that sends everything to 0 is not 1-1.

(f) A square matrix with two identical columns has a determinant of 0.

Solution: TRUE, since one column operation will yield a column of zeros.

(g) A square matrix is invertible if and only if the associated linear transformation is onto.

Solution: TRUE. This is one of our many equivalences to invertibility.

(h) If *A* is a square matrix, and if AX = B has no solutions for some vector *B*, then *A* is not invertible.

Solution: TRUE, since such a vector *B* would not be in the column space of *A*, so *A* would not be onto.

(i) If *A* is a 5×3 matrix and *B* is a 3×4 , the transformation induced by the product matrix *AB* is never one-to-one.

Solution: TRUE, since *B* is a transformation from $\mathbb{R}^4 \to \mathbb{R}^3$, it is not 1-1. Following it by *A* will not change this.

(j) If *A* is a 5×3 matrix and *B* is a 3×4 , the transformation induced by the product matrix *AB* is never onto.

Solution: TRUE. *AB* is a transformatino from $\mathbb{R}^4 \to \mathbb{R}^5$, so *AB* can't be onto.