MA 238-01			
§1.1-1.7,1.9 §2.1,2.5	TeSt \#1		Name:

1. For each of the following differential equations, state whether or not it is linear (L), separable (S), homogeneous (H), or none (N). State all that apply. (9 points)
(a) $\frac{d y}{d t}=t y^{2} \sin (t)$
(b) $t^{2} \frac{d y}{d t}+\ln (t) \cdot y=t^{3}+3 t-7$
(c) $\left(x^{2}+x y\right) d y=\left(y^{2}-x^{2}\right) d x$
2. Find the general solution to the differential equation $\frac{d y}{d t}+\frac{2}{t} y=t$. Then find the solution that satisfies the initial condition $y(1)=2$. What happens to y as $t \rightarrow \infty$? As $t \rightarrow 0$? (15 points)
3. Find the solution for the initial value problem $\frac{d y}{d t}=2 y^{2}+t y^{2}$. At what t-value do all of the solutions have their minimum value? Explain. (15 points)
4. A 100 -liter tank contains pure water. A brine solution containing $250 \sin (t)$ grams of salt per liter at time t minutes flows into the tank at a rate of 2 liters per minute. Write an initial value problem the solution to which would give the amount of salt in the tank at time t. You do not need to solve the IVP. (15 points)
5. Bugs are located in the (x, y)-plane at the four points $(\pm 1, \pm 1)$. The bug in quadrant I pursues the bug in quadrant IV; the bug in quadrant IV pursues the bug in quadrant III; etc. Find an IVP the solution to which would describe the path the bug in quadrant 1 follows. You do not need to solve the IVP. (15 points)
6. Use the method of Picard to find approximations to the solution of the differential equation $y^{\prime}=y+\sin (t), y(0)=0$. You should compute the Picard iterates y_{0}, y_{1}, and y_{2}. (15 points)
7. For the differential equation $\frac{d y}{d t}=2 t-y$ with initial condition $y(0)=1$, use Euler's method to approximate the value of $y(1)$ using 2 steps (i.e., use $h=0.5$). Then use the Runge-Kutta method to estimate $y(1)$ using just one step (i.e., use $h=1$). Which estimate do you think is the more accurate? Why? (16 points)

Euler Method

Runge-Kutta Method

