MA 238-02 §3.7 + handouts	QuiZZ \#5		Name:

1. Determine the largest interval in which the IVP has a unique solution. You need not find the solution but you should explain how you arrive at your conclusion.

$$
t(t-4) y^{\prime \prime}+3 t y^{\prime}+4 y=2, \quad y(3)=0, \quad y^{\prime}(3)=-1
$$

2. Compute the Wronskian of the two functions $y_{1}=t^{2}$ and $y_{2}=y^{3}$. Is it possible for $\left\{t^{2}, t^{3}\right\}$ to be a basic set of solutions for a differential equation of the form $y^{\prime \prime}+a(t) y^{\prime}+$ $b(t) y=f(t)$ on the interval $I=(-1,1)$. Assume that $a(t), b(t), f(t) \in C^{0}(I)$.
3. Use variation of parameters to find a particular solution for the given differential equation. Then write the general solution.

$$
y^{\prime \prime}+y=\csc t
$$

4. For the given differential equation note that t^{2} is a solution. Use the reduction of order method as explained in the handout to find the general solution.

$$
t^{2} y^{\prime \prime}+t y^{\prime}-4 y=0
$$

