The Birthday Problem

In class, we saw that the probability of having a birthday match in a group of n people was

$$1 - \frac{P(365, n)}{365^n}$$

The following table shows the computed probabilities for selected values of n.

п	Probability		n	Probability
1	0		26	.5982408201
2	.002739726027		27	.6268592823
3	.008204165885		28	.6544614723
4	.01635591247		29	.6809685375
5	.02713557370		30	.7063162427
6	.04046248365		31	.7304546337
7	.05623570310		32	.7533475279
8	.07433529235		33	.7749718542
9	.09462383389		34	.7953168646
10	.1169481777		35	.8143832389
11	.1411413783		36	.8321821064
12	.1670247888		37	.8487340082
13	.1944102752		38	.8640678211
14	.2231025120		39	.8782196644
15	.2529013198	-	40	.8912318098
16	.2836040053	4	41	.9031516115
17	.3150076653	4	42	.9140304716
18	.3469114179	4	43	.9239228557
19	.3791185260		44	.9328853686
20	.4114383836		45	.9409758995
21	.4436883352	-	46	.9482528434
22	.4756953077	4	47	.9547744028
23	.5072972343	-	48	.9605979729
24	.5383442579		49	.9657796093
25	$.5\overline{686997040}$		50	.9703735796

EXERCISE: Test your calculator skills and see if you can verify a few of the entries in the table using the formula at the top of the page. Better yet, write a computer program to do the work for you.