The Birthday Problem

In class, we saw that the probability of having a birthday match in a group of n people was

$$
1-\frac{P(365, n)}{365^{n}}
$$

The following table shows the computed probabilities for selected values of n.

n	Probability
1	0
2	.002739726027
3	.008204165885
4	.01635591247
5	.02713557370
6	.04046248365
7	.05623570310
8	.07433529235
9	.09462383389
10	.1169481777
11	.1411413783
12	.1670247888
13	.1944102752
14	.2231025120
15	.2529013198
16	.2836040053
17	.3150076653
18	.3469114179
19	.3791185260
20	.4114383836
21	.4436883352
22	.4756953077
23	.5072972343
24	.5383442579
25	.5686997040

n	Probability
26	.5982408201
27	.6268592823
28	.6544614723
29	.6809685375
30	.7063162427
31	.7304546337
32	.7533475279
33	.7749718542
34	.7953168646
35	.8143832389
36	.8321821064
37	.8487340082
38	.8640678211
39	.8782196644
40	.8912318098
41	.9031516115
42	.9140304716
43	.9239228557
44	.9328853686
45	.9409758995
46	.9482528434
47	.9547744028
48	.9605979729
49	.9657796093
50	.9703735796

Exercise: Test your calculator skills and see if you can verify a few of the entries in the table using the formula at the top of the page. Better yet, write a computer program to do the work for you.

