Distribution Problems¹

Domain (k)	Range (n)	may receive 0	each receives ≥ 1
DISTINCT	DISTINCT	functions n ^k	surjections n!S(k,n)
DISTINCT	DISTINCT (each receives ≤ 1)	injections P(n,k)	bijections n! if $n = k0 if n \neq k$
DISTINCT	DISTINCT (order received matters)	ordered distributions P(n+k-1,k)	$k!\binom{k-1}{n-1} = k!\binom{k-1}{k-n}$
DISTINCT	Identical	$\sum_{i=0}^{n} S(k,i)$	S(k,n)
DISTINCT	IDENTICAL (each receives ≤ 1)	$ \begin{array}{l} 1 \text{ if } k \leq n \\ 0 \text{ if } k > n \end{array} $	$1 \text{ if } k = n \\ 0 \text{ if } k \neq n \end{cases}$
DISTINCT	IDENTICAL (order received matters)	$\sum_{i=0}^{n} L(k,i)$	broken permutations $L(k, n) = {k \choose n} P(k-1, n-1)$
IDENTICAL	DISTINCT	$\binom{k+n-1}{k}$	$inom{k-1}{k-n}$ if $k \ge n$ 0 if $k < n$
Identical	DISTINCT (each receives ≤ 1)	$subsets \binom{n}{k} if k \le n0 if k > n$	$\begin{array}{l} 1 \text{ if } n = k \\ 0 \text{ if } n \neq k \end{array}$
IDENTICAL	Identical	$\frac{\sum_{i=0}^{n} Part(k, i) \text{ if } n < k}{Part(k) \text{ if } k \le n}$	Part(n,k)
IDENTICAL	$\frac{\text{IDENTICAL}}{(\text{each receives} \le 1)}$	$\begin{array}{c} 1 \text{ if } k \leq n \\ 0 \text{ if } k > n \end{array}$	1 if $k = n$ 0 if $k \neq n$

- 1. P(n, k) denotes the number of *k*-permutations of *n* objects.
- 2. S(n, k) denotes the *Stirling numbers of the Second Kind*, i.e., the number of set partitions of an *m*-element set into *n* classes.
- 3. L(k, n) denotes the *Lah numbers* or number of *broken permutations*, i.e., the number of ways to break up *k* distinct objects into *n* unordered classes of non-empty permutations.
- 4. Part(k, n) denotes the number of integer partitions of an integer n into k parts.
- 5. Part(n) denotes the total number of integer partitions of n.

¹Introductory Combinatorics, Third Edition, by Kenneth P. Bogart