Distribution Problems ${ }^{1}$

Domain (k)	Range (n)	may receive 0	each receives ≥ 1
Distinct	Distinct	$\begin{gathered} \text { functions } \\ n^{k} \end{gathered}$	surjections $n!S(k, n)$
Distinct	Distinct (each receives ≤ 1)	$\begin{gathered} \text { injections } \\ P(n, k) \end{gathered}$	bijections n ! if $n=k$ 0 if $n \neq k$
Distinct	Distinct (order received matters)	ordered distributions $P(n+k-1, k)$	$k!\binom{k-1}{n-1}=k!\binom{k-1}{k-n}$
Distinct	Identical	$\sum_{i=0}^{n} S(k, i)$	$S(k, n)$
Distinct	IDENTICAL (each receives ≤ 1)	$\begin{aligned} & 1 \text { if } k \leq n \\ & 0 \text { if } k>n \end{aligned}$	$\begin{aligned} & 1 \text { if } k=n \\ & 0 \text { if } k \neq n \end{aligned}$
Distinct	Identical (order received matters)	$\sum_{i=0}^{n} L(k, i)$	broken permutations $\begin{gathered} L(k, n)= \\ \binom{k}{n} P(k-1, n-1) \end{gathered}$
IdENTICAL	DIstinct	$\binom{k+n-1}{k}$	$\begin{gathered} \binom{k-1}{k-n} \text { if } k \geq n \\ 0 \text { if } k<n \end{gathered}$
IdEntical	DISTINCT $\text { (each receives } \leq 1 \text {) }$	subsets $\binom{n}{k}$ if $k \leq n$ 0 if $k>n$	$\begin{aligned} & 1 \text { if } n=k \\ & 0 \text { if } n \neq k \end{aligned}$
IdENTICAL	IDENTICAL	$\begin{aligned} & \sum_{i=0}^{n} \operatorname{Part}(k, i) \text { if } n<k \\ & \quad \operatorname{Part}(k) \text { if } k \leq n \end{aligned}$	$\operatorname{Part}(n, k)$
Identical	IDENTICAL $\text { (each receives } \leq 1 \text {) }$	$\begin{aligned} & 1 \text { if } k \leq n \\ & 0 \text { if } k>n \end{aligned}$	$\begin{aligned} & 1 \text { if } k=n \\ & 0 \text { if } k \neq n \end{aligned}$

1. $P(n, k)$ denotes the number of k-permutations of n objects.
2. $S(n, k)$ denotes the Stirling numbers of the Second Kind, i.e., the number of set partitions of an m-element set into n classes.
3. $L(k, n)$ denotes the Lah numbers or number of broken permutations, i.e., the number of ways to break up k distinct objects into n unordered classes of non-empty permutations.
4. Part (k, n) denotes the number of integer partitions of an integer n into k parts.
5. Part (n) denotes the total number of integer partitions of n.
[^0]
[^0]: ${ }^{1}$ Introductory Combinatorics, Third Edition, by Kenneth P. Bogart

