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1. P(n, k) denotes the number of k-permutations of n objects.

2. S(n, k) denotes the Stirling numbers of the Second Kind, i.e., the number of set partitions of an
m-element set into n classes.

3. L(k,n) denotes the Lah numbers or number of broken permutations, i.e., the number of ways to
break up k distinct objects into n unordered classes of non-empty permutations.

4. Part(k,n) denotes the number of integer partitions of an integer n into k parts.

5. Part(n) denotes the total number of integer partitions of n.
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