MA 367-01 §5.5 - 6.1	Quiz #3	score	Name: 10 February 2003
-------------------------	---------	-------	---------------------------

INSTRUCTIONS: Turn in solutions to the following problems by Friday (14 February 2003) in class. As usual, fully explain your solutions and calculate the numerical values (when appropriate).

1. Show that

$$\left[\binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \cdots + \binom{n}{n}\right]^2 = \sum_{k=0}^{2n} \binom{2n}{k}.$$

Solution: There are several ways to verify this identity. Here's one.

$$\sum_{k=0}^{n} \binom{n}{k} = 2^{n}$$
 (basic identity)
$$\left[\sum_{k=0}^{n} \binom{n}{k}\right]^{2} = (2^{n})^{2}$$
 (square both sides)
$$\left[\sum_{k=0}^{n} \binom{n}{k}\right]^{2} = 2^{2n}$$
$$\left[\sum_{k=0}^{n} \binom{n}{k}\right]^{2} = \sum_{k=0}^{2n} \binom{2n}{k}$$
 (basic identity)

Here's another, described briefly. Every walk from row 0 in Pascal's triangle to row 2n can be uniquely split into a walk from row 0 to a point on row n followed by a walk from that point on row n to row 2n. The result follows using the formula for the number of such walks. Can you supply the details for this?

2. Evaluate

$$\sum_{k=1}^{n} (-1)^k k\binom{n}{k}.$$

Solution: Begin with $\sum_{k=0}^{n} \binom{n}{k} x^{k} = (1+x)^{n}$. Differentiate both sides to obtain $\sum_{k=1}^{n} k \cdot \binom{n}{k} x^{k-1} = n \cdot (1+x)^{n-1}$. Substituting x = -1, we obtain $\sum_{k=1}^{n} (-1)^{k-1} k \cdot \binom{n}{k} = n \cdot (1-1)^{n-1}$, and multiplying both sides by -1 yields $\sum_{k=1}^{n} (-1)^{k} k \cdot \binom{n}{k} = -n \cdot 0^{n-1}$. This last expression equals 0 if n > 1, but is undefined (0^{0}) when n = 1. A separate evaluation for n = 1 shows the sum is -1.

- 3. Enumerate all the permutations of the letters *a*, *b*, *c*, *d*
 - (a) in lexicographic order.
 - (b) Since that was so much fun, do it again in a minimum change order this time, i.e., so that each permutation is obtained from its predecessor by interchanging a single pair of letters. Better yet, make the last permutation in the list differ from the first by a single interchange, also.

Solution: There is only one way to do the enumeration lexicographically, but there are several ways to do the minimum change enumeration.

Lexicographic	Minimum Change	
abcd	abcd	
abdc	abdc	
acbd	adbc	
acdb	adcb	
adbc	acdb	
adcb	acbd	
bacd	dcba	
badc	dcab	
bcad	dacb	
bcda	dabc	
bdca	dbac	
bdac	dbca	
cabd	cbda	
cadb	cbad	
cbad	cabd	
cdba	cadb	
cdab	cdab	
cdba	cdba	
dabc	bdca	
dabc	bdac	
dbac	badc	
dbca	bcda	
dcab	bcad	
dcba	bacd	

- 4. Construct a generating function for a_r , the number of distributions of r identical objects into:
 - (a) five different boxes with at most 4 objects in each box;
 - (b) four different boxes with between 3 and 8 objects in each box;
 - (c) seven different boxes with at least one object in each box.

You may leave your answers in factored form on this problem.

Solution:

- (a) $(1 + x + x^2 + x^3 + x^4)^5$
- (b) $(x^3 + x^4 + x^5 + x^6 + x^7 + x^8)^4$
- (c) $(x + x^2 + x^3 + ...)^7$
- 5. Construct a generating function that could be used to determine how many ways there are to distribute 10 identical balls into 4 different boxes so that the first box has between 2 and 6 balls, the second box has an odd number of balls, and the other two boxes have no more than 6 balls each. The use a computer algebra system to determine the numerical answer.

Solution: $(x^2 + x^3 + x^4 + x^5 + x^6)(x + x^3 + x^5 + x^7 + x^9)(1 + x + x^2 + x^3 + x^4 + x^5 + x^6)^2$ We look for the coefficient of x^{10} in the expansion, which turns out to be 61, so there are 61 different distributions of balls into the boxes as described.