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1 The Undetermined Coefficients Method

Consider the following linear second order differential equation:

y′′ + a(t)y′ + b(t)y = f(t) (1)

In order to describe the method of undetermined coefficients, we first need a definition.

Definition. A function is called a UC function if it is either

1. a function of one of the following types:

(a) tn, where n is a non-negative integer;

(b) eαt , where α is a non-zero constant;

(c) sin(βt + γ), where β and γ are constants, β �= 0;

(d) cos(βt + γ), where β and γ are constants, β �= 0; or

2. a function defined as a finite product of functions listed in (1).

The method of undetermined coefficients will apply when f(x) in equation (1) is a finite
linear combination of UC functions. Note that successive derivatives of a UC function are also
UC functions or linear combinations of UC functions. This property of UC functions is what
allows the method of undetermined coefficients to work.

Definition. Let f be a UC function. The UC set of f consists of f itself together with all
linear independent UC functions of which derivatives of f are constant multiples or linear
combinations.

Examples

1. Let f(t) = t3. Then f is a UC function, and the UC set of f is {t3, t2, t, 1}.
2. Let f(t) = sin2t. Then the UC set of f is {sin2t, cos2t}.
3. Let f(t) = t2 cos t. Then f is a UC function since it is a product of the functions t2 and

cos t. The UC set of f is {t2 cos t, t2 sin t, t cos t, t sin t, cos t, sin t}.
Now, in the differential equation (1), suppose that f(t) is a linear combination of UC func-

tions ui,
f(t) = a1u1 + a2u2 + . . .+ amum .

The method of undetermined coefficients prodeeds as follows.
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1. Find a solution, yu, (sometimes called a complementary solution) for the corresponding
homogeneous (undriven) differential equation. Note that this is generally possible only if
the coefficient functions a(t) and b(t) are constant functions. If they are not, we do not
have a general procedure for finding the complementary solution.

2. For each of the UC functions
u1, u2, . . . , um

of which f is a linear combination, form the respective UC sets, say

S1, S2, . . . , Sm .

3. For each i �= j, if Si ⊂ Sj , delete Si from the list.

4. For each remaining UC set which contains an element which is a solution of the homoge-
neous equation, multiply each member of that UC (and only that UC set) by the smallest
integral power of t so that none of the members of that set solves the homogeneous
equation.

5. Now form a linear combination of all the members of all the sets in step 4 using arbitrary
constant coefficients (undetermined coefficients).

6. Determine the unknown coefficients by substituting the linear combination formed in the
previous step into the original differential equation.

The procedure is illustrated in the following example.

Example. Solve the following differential equation using the method of undetermined coeffi-
cients.

y′′ − 3y′ + 2y = 2t2 + et + 2tet + 4e3t

Step 1: The corresponding homogeneous (undriven) equation has solution

yc = c1et + c2e2t .

Step 2: The function f(t) on the right hand side of the original differential equation is a linear
combinatin of the four UC functions

t2, et, tet, and e3t .

So we form the four UC sets of these functions to get S1 = {t2, t, 1}, S2 = {et}, S3 =
{tet, et}, and S4 = {e3t}.

Step 3: Since S2 ⊂ S3, we eliminate S2 from further consideration.

Step 4: Note that S3 includes et , which is a solution of the homogeneous (undriven) equation.
So we multiply each member of S3 by t to obtain S′3 = {t2et, tet} which now has no
members which are solutions of the homogeneous (undriven) equation.

Step 5: Forming linear combinations of the elements of S1, S′3, and S4, we obtain

yd = At2 + Bt + C +De3t + Et2et + Ftet .
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Step 6: Computing y′d and y′′d and substituting into the original driven ODE, one finds after
some algebra that

yd = t2 + 3t + 7
2
+ 2e3t − t2et − 3tet .

Thus, the general solution is

y = yu +yd = c1et + c2e2t + t2 + 3t + 7
2
+ 2e3t − t2et − 3tet .

2 Variation of Parameters

Consider the following linear second order differential equation:

y′′ + a(t)y′ + b(t)y = f(t) (2)

If
yu(t) = c1y1(t)+ c2y2(t) (3)

is the general solution to the corresponding undriven equation, the method of variation of
parameters allows us to search for a particular solution to Equation (2) of the form

yp(t) = v1(t)y1(t)+ v2(t)y2(t) (4)

The method begins by assuming that we have a general solution yu(t) to the corresponding
undriven equation as in equation (3). This is no small assumption since we have only learned
methods for doing this in very special cases (e.g., when a(t) and b(t) are constants). Never-
theless, we proceed assuming we can find a particular solution to equation (2) in the form of
Equation (3). Then we can compute the first two derivatives of yp(t) and substitute them into
the ODE given by equation (2). This would give us a single equation involving v1 and v2, so we
have some latitude in imposing a second condition on those functions to simplify the work.

If we take v′1(t)y1(t)+v′2(t)y2(t) = 0 as the second condition, we will have two equations
in the two unknown functions v1(t) and v2(t) as follows:

v′1(t)y1(t)+ v′2(t)y2(t) = 0 (5)

v′1(t)y
′
1(t)+ v′2(t)y

′
2(t) = f(t) (6)

We can use Cramer’s Rule to solve the system given by equations (5) and (6) to obtain

v′1(t) =

∣∣∣∣∣
0 y2(t)

f (t) y′2(t)

∣∣∣∣∣∣∣∣∣∣
y1(t) y2(t)
y′1(t) y′2(t)

∣∣∣∣∣
=

∣∣∣∣∣
0 y2(t)

f (t) y′2(t)

∣∣∣∣∣
W[y1, y2](t)

(7)

v′2(t) =

∣∣∣∣∣
y1(t) 0
y′1(t) f (t)

∣∣∣∣∣∣∣∣∣∣
y1(t) y2(t)
y′1(t) y′2(t)

∣∣∣∣∣
=

∣∣∣∣∣
y2(t) 0
y′2(t) f (t)

∣∣∣∣∣
W[y1, y2](t)

(8)
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where W[y1, y2](t) denotes the Wronskian of y1(t) and y2(t).

Exercise 1: Verify this, i.e., compute the first two derivatives ofyp from equation (4), substitute
them into the ODE given by equation 2 and show equation (6) follows once equation (5) is
imposed.

Exercise 2: Use the variation of parameters method to find a particular solution of the ODE

2y′′ − 3y′ +y = 10cos t

Then write the general solution of the ODE. [Note: This ODE is not in the form of equation (2)]

Exercise 3: Find a particular solution and the general solution of

y′′ +y = sec t

Exercise 4: Consider the ODE

(1− t)y′′ + ty′ −y = 2(1− t)2e−t, t ∈ (1,∞) (9)

(a) Show that {y1(t) = t,y2(t) = et} is a basic solution set for the undriven differential
equation (1− t)y′′ + ty′ −y = 0 over the t-interval (1,∞).

(b) Write down the general solution of the underived differential equation given in (a) that is
valid over the t-interval (1,∞).

(c) Use variation of parameters to find a particluar solution of equation (9). Then write down
the general solution for this ODE.

3 Summary of Methods for Second Order DE’s

Consider the second order differential equation

y′′ + a(t)y′ + b(t)y = f(t) (10)

1. If the functions a(t) and b(t) are constants, it is always possible to find two linearly
independent solutions of the corresponding undriven equation. A particular solution can
then be found using variation of parameters. Thus, the complete solution can be found.
If f(t) is of the appropriate form, undetermined coefficients may be easier to use than
variation of parameters to find a particular solution.

2. If the functions a(t) and b(t) are not constants, there is no general method for solving
equation (10) in terms of a finite number of elementary functions. [Solutions involving
infinite series are possible but we don’t cover that topic.] However, if one solution can
be found for the corresponding undriven equation, then a second solution can be found
using reduction of order, and the general solution can be obtained using variation of
parameters. In fact, both of these calculations can be performed simultaneously, as is
illustrated below. Thus, the problem of solving (∗) when a(t) and b(t) are not constants
rests on the possibility of finding one solution to the corresponding undriven equation.
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Example. Consider ty′′ + 2(1− t)y′ + (t − 2)y = 2et . Observe that y = et is a solution to the
corresponding undriven equation. Set y = et · v(t). Then

[t(v′′ + 2v′ + v)+ (2− 2t)(v′ + v)+ (t − 2)v]et = 2et

or

tv′′ + 2v′ = 2.

Then

v′(t) = −c1
t2
+ 1

So,

v(t) = c1
t
+ t + c2.

The general solution is then y(t) =
[
c1
t
+ t + c2

]
et.

Instructions. In each of the following exercises, show that the given function is a solution of
the undriven ODE that corresponds with the given driven ODE. Then, find the general solution
of the driven differential equation using the method of reduction of order explained in this
section.

Exercise 5: t3y′′ + ty′ −y = 0; y = t.

Exercise 6: 2ty′′ + (1− 4t)y′ + (2t − 1)y = et ; y = et .

Exercise 7: (t2 + 1)y′′ − 2ty′ + 2y = 6(t2 + 1)2; y = t.


