# Project 1 Solution 

MA 125-06
Fall 2000
Instructions: Each team will submit one report. All members of the team get the same grade. Each team member must sign the report. The report should include a labeled drawing and full verbal explanations. Write up the solution as you would like it to appear in a well-written text. The report is due on Friday, November 3, 2000.

Problem: A large clock located in a clock tower has an hour hand that is 1.5 meters long and a minute hand that is 2 meters long. At what rate is the distance between the tips of the hands changing at 2:00 o'clock?

Solution: Let $d$ be the distance between the tips of the two hands and $\theta$ the angle between them as shown in the diagram. Then from the law of cosines, we have

$$
\begin{equation*}
d^{2}=2^{2}+1.5^{2}-2(2)(1.5) \cos \theta \tag{1}
\end{equation*}
$$

Differentiating both sides of the equation with respect to time $t$, we get

$$
2 d d^{\prime}=0+0+6(\sin \theta) \theta^{\prime}
$$

Solving for $d^{\prime}$ we have

$$
\begin{equation*}
d^{\prime}=\frac{3(\sin \theta) \theta^{\prime}}{d} \tag{2}
\end{equation*}
$$

At the given moment (2:00 o'clock), $\theta=\frac{\pi}{3}$ radians/sec, $\theta^{\prime}=\left(\frac{2 \pi}{12}-2 \pi\right)=\frac{11 \pi}{6}$ radians/hour (taking the difference of the angular speed of the two hands in radians per hour), and $d=$ $\sqrt{2^{2}+1.5^{2}-2(2)(1.5) \frac{1}{2}}=\sqrt{3.25}=\frac{\sqrt{13}}{2} \approx 1.8$ meters from (1). Substituting these values into equation (2), we get $d^{\prime}=\frac{3 \sin (\pi / 3)(-11 \pi / 6)}{\sqrt{13} / 2}=\frac{-5 \pi \sqrt{39}}{26} \approx-8.3$ meters/hour. So the distance between the tips of the hands is decreasing at a rate of $8.3 \mathrm{~m} / \mathrm{hour}$ (or 0.138 me ters/minute if you prefer those units).


