MA 125-06 §3.2-3.8	Test \#2		Name: $\frac{\text { score }}{}$

1. Calculate derivatives for the following functions showing the algebraic methods you use. (8 points each)
(a) $f(x)=\tan \left(x^{2}\right)$
(b) $f(x)=\sqrt[3]{x^{2}+3 x+1}$
(c) $f(x)=\ln \left(\cos \left(x^{2}\right)+2\right)$
(d) $f(x)=\sqrt{1+\sqrt{1+x^{2}}}$
2. Let $f(x)=\ln x-\cos x$. Can you use the Intermediate Value Theorem to show that $f(x)$ has a root in the interval $(1,2)$? If so, fully explain how you would do this. If not, explain why not. (11 points)
3. Let C be the curve in the $x y$-plane described by the parametric equations $x(t)=\cos t$ and $y(t)=2 \sin t$. Find a formula, in terms of t, for the slope of the tangent line. Then determine all points on the curve that have a tangent line with slope -2 . (11 points)
4. A particle moves along the x-axis beginning at time $t=0$ according to the function $x(t)=4 t^{3}-3 t^{2}-18 t+3$. Where is the particle located when $t=2$ and what is its velocity then? Determine the time intervals on which the particle is moving to the right and also those on which it is moving to the left. (12 points)
5. Let $h(x)=f(g(x))$. Use the information in the table to find the value of $h^{\prime}(3)$. (11 points)

\boldsymbol{x}	1	2	3	4	5
$\boldsymbol{f}(\boldsymbol{x})$	5	2	3	3	1
$f^{\prime}(x)$	2	1	3	2	3
$\boldsymbol{g}(\boldsymbol{x})$	3	2	4	3	1
$\boldsymbol{g}^{\prime}(\boldsymbol{x})$	3	2	2	2	3

6. Use implicit differentiation to find a formula for $\frac{d y}{d x}$ if $x y^{2}+e^{x}+\ln y=1$. Then determine the slope of the tangent line to the curve when $x=0$. (12 points)
7. Find the linearization of the function $f(x)=\sqrt{x}$ at $x=4$ and use the linearization to approximate the value of $\sqrt{3.95}$. (11 points)
