1. Calculate derivatives for the following functions showing the algebraic methods you use. *(8 points each)*

(a) $f(x) = \tan(x^2)$

(b) $f(x) = \sqrt[3]{x^2 + 3x + 1}$

(c) $f(x) = \ln(\cos(x^2) + 2)$

(d)
$$f(x) = \sqrt{1 + \sqrt{1 + x^2}}$$

2. Let $f(x) = \ln x - \cos x$. Can you use the Intermediate Value Theorem to show that f(x) has a root in the interval (1,2)? If so, fully explain how you would do this. If not, explain why not. (*11 points*)

3. Let *C* be the curve in the xy-plane described by the parametric equations $x(t) = \cos t$ and $y(t) = 2 \sin t$. Find a formula, in terms of *t*, for the slope of the tangent line. Then determine all points on the curve that have a tangent line with slope -2. (11 points)

4. A particle moves along the *x*-axis beginning at time t = 0 according to the function $x(t) = 4t^3 - 3t^2 - 18t + 3$. Where is the particle located when t = 2 and what is its velocity then? Determine the time intervals on which the particle is moving to the right and also those on which it is moving to the left. *(12 points)*

x	1	2	3	4	5
$f(\mathbf{x})$	5	2	3	3	1
f'(x)	2	1	3	2	3
g(x)	3	2	4	3	1
g'(x)	3	2	2	2	3

5. Let h(x) = f(g(x)). Use the information in the table to find the value of h'(3). (11 points)

6. Use implicit differentiation to find a formula for $\frac{dy}{dx}$ if $xy^2 + e^x + \ln y = 1$. Then determine the slope of the tangent line to the curve when x = 0. (12 points)

7. Find the linearization of the function $f(x) = \sqrt{x}$ at x = 4 and use the linearization to approximate the value of $\sqrt{3.95}$. (11 points)