MA 227 §10.1-11.6

Test #1

(75 minutes) so

score

Name: _____

3 July 1999

1. For each of the following equations, determine if there is a closely matching graph below. If there is, report its letter. If there is not, write NO MATCH. (8 points)

- 2. For the circular helix $\mathbf{r}(t) = \langle \cos(t), \sin(t), 5t \rangle$, calculate and simplify (12 points)
 - (a) **T**(t)
 - (b) **N**(*t*)
 - (c) the curvature at any point.

3. If a particle is moving along in space with $\mathbf{r}(t)$ as its position vector, if $\mathbf{r}'(0) = \langle 2, 1, 2 \rangle$, and if $\mathbf{r}''(0) = \langle 1, -1, 1 \rangle$, calculate the tangential and normal components of acceleration when t = 0. Is the speed of the particle increasing or decreasing at that point? (10 points)

4. For each of the following equations, determine if there is a closely matching graph. If there is, report its Letter. If there is not, write NO MATCH. (8 points)

5. Let $f(x, y) = \sqrt{25 - x^2 - y^2}$. Describe the domain of f. Plot level curves for z = 0, 1, 2, 3, 4, and 5 on the set of axes. (10 points)

6. Evaluate the limit (9 points)

$$\lim_{(x,y)\to(0,0)} \frac{xy^2}{x^2 + y^4}$$

7. A right circular cylinder has its height increasing at a constant rate of 2 millimeters per second while its radius is decreasing at a rate of 1 millimeter per second. At what rate is its volume changing if the height is 100 mm and the radius is 10 mm? (10 points)

8. Let
$$f(x, y) = \sqrt{x^2 + y^2}$$
. (12 points)

(a) Calculate the gradient function for f.

(b) Find the value of the directional derivative of f at the point (1,1) going in the direction from the point (1,1) to the point (4,5).

9. The contour plot below shows *z*-levels from 1 to 15 along the right edge from bottom to top. (12 points)

- (b) Draw the gradient vector at (1,1) on the graph so the tail of the vector is at the point (1,1).
- (c) Determine the signs of $f_{xx}(1,1)$, $f_{xy}(1,1)$, and $f_{yy}(1,1)$.

10. For the function $f(x, y) = \frac{1}{\sqrt{x^2 + y^2}}$ find an equation of the tangent plane to the graph of f(x, y) when x = 3 and y = 4. (9 points)