1. Complete the following definition. (4 points)

Let $f(\mathbf{x})$ be defined throughout some deleted neighborhood of \mathbf{x}_0 . Then $\lim_{\mathbf{x}\to\mathbf{x}_0}=L$ if and only if

2. Evaluate the following limits (explain your reasoning). (5 points each) (a) $\lim_{(x,y)\to(0,0)} \frac{x^2-y^2}{x^2+y^2}$

(a)
$$\lim_{(x,y)\to(0,0)} \frac{x^2 - y^2}{x^2 + y^2}$$

(b)
$$\lim_{(x,y)\to(0,0)} \frac{\cos x}{x^2 + y^2 + 1}$$

3. Let $f(x,y) = 2x^2 - y^2$.

Find the value of the directional derivative of f at the point (2,1) in the direction of $3\mathbf{i} + 4\mathbf{j}$. (6 points)