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M a n y  different disk knot s  wi th  the  same  exterior 

L. R. Hrrr  r and D. W. SUMNERS 

w Introduction 

Much of codimension-two knot theory is concerned with finding and comput- 
ing topological invariants of knot exteriors in order to distinguish between the 
knots themselves. It is well-known ([G], [L-S], [B]) that there are at most two 
inequivalent smooth n-sphere knots with the same exterior (n > 2), and examples 
of two inequivalent n-knots with the same exterior have recently been discovered 
([C-S], [Go]). We show that the corresponding theory for (n + 1)-disk knots is 
more complicated. Let Y denote the bounded exterior of a smooth (n + 1)-disk 
knot. The indeterminacy index ~(Y) is the number of inequivalent ( n +  1)-disk 
pairs having exteriors diffeomorphic to Y. We show that there exist disk knots 
with large indeterminacy indices (bigger than two, in particular). We then show 
that ~(Y)---21~'I, where I~r'l denotes the cardinality of 7r', the commutator 
subgroup of 1r = 7r~(0Y). This yields as a corollary a new and easy proof of the 
well-known fact that s 2, where X is the exterior of an n-sphere knot, and 
~(X) its indeterminacy index. 

w The indeterminacy index 

For convenience, we work in the smooth category (the same results hold in the 
locally flat PL situation). We let S" and D "§ denote the standard n-sphere and 
(n + 1)-disk, respectively. An n-sphere knot (or just n-knot) is the pair (S "§ kS") 
where k:S"---~ S "§ is an embedding. The exterior X of an n-knot is the 
complement in S "§ of an open trivial 2-disk bundle neighborhood of the 
submanifold kS n. An (n+l)-disk knot is the pair (D"+a, gD '~§ where 
g :D"§ D ~+3 denotes a proper embedding, one in which the submanifold 
gD "§ intersects c3D "+3 transversely in g(OD"§ We let Y denote the (n + 1)-disk 
knot exterior. Two knots are equivalent if there is a diffeomorphism of the 
ambient space throwing one submanifold onto the other (we disregard orienta- 
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tions), and the indeterminacy index (, is the number of inequivalent knots 
determined by a given knot exterior. 

We will now produce examples to show that ~(Y) can be large. The reason for 
this is that 0 Y contains the exterior X of the boundary sphere pair, and X can be 
very complicated. Recall the example of Kato [Ka 2, Theorem 4.9]: 

Let  n -- 3, a n d / W  '+2 be a contractible manifold such that ~rl(0M) is the binary 
icosohedral group G = (a, b [ a 5 = b 3 = (ab) 2) [Ke]. Let  y~+3 = S 1 x M~+2; we will 
show that Y is the exterior of at least three inequivalent (n + 1)-disk knots. Then 
by modifying the construction, we will show that the indeterminacy index of a disk 
knot exterior can be at least as large as six. 

Let  H be a group. A weight element of H is an element whose normal closure 
is all of H. The automorphism class of an element of H is the orbit of the element 
under the automorphism group of H. Two elements of H are algebraically distinct 
if they are in different automorphism classes. 

We are interested in finding different automorphism classes of weight dements  
in the group 7rx(0Y)-- Z x G ~ (t, a, b I a5 = b3 = (ab) 2, ta = at, tb = bt) where Z 
denotes the infinite cyclic group generated by t. An element of the form t"g, for 
g e G, is a weight element of Z • G if and only if t" is a weight element of Z and 
g is a weight element  of G, which forces n = + 1. To  determine the weight 
elements of G, note that {1} <1{1, (ab) 2} ~IG is a composition series for G, since 
(a, b I a5 = b3 = (ab) 2 = 1) is a presentation of the simple group As. The center of 
G is C(G)  = {1, (ab)2}, the cyclic group of order 2. Any element of G which is not 
in C(G)  is a weight element of G. The set of algebraically distinct weight elements 
of G is {a, a 2, b, b 2, ab}. That they are algebraically distinct follows from their 
different orders: 10, 5, 6, 3 and 4, respectively. 

Therefore  we have ta, ta 2, tb, tb 2, and tab as weight elements of Z •  G. 
However  ta and ta 2 are in the same automorphism class in Z x G, as are tb and 
tb 2 (e.g., the automorphism 0, induced by O(t) = t(ab) 2, O(a) = d ,  and O(b) = bash 
sends ta to ta2). So our list of possibly algebraically distinct weight elements is 
shortened to ta, tb, and tab. That  these three elements are algebraically distinct 
follows from the fact that the center of Z •  G is Z •  (ab)2}, so Z •  G modulo 
its center is A s ~ ( a ,  b l a S = b 3 = ( a b ) 2 = l ) .  But the center is a characteristic 

subgroup, so any automorphism of Z • G induces one on As. Since a, b, and ab 
have different orders in As, their counterparts in Z x G must be algebraically 

distinct. 
Let  {o'i I 1<-i<-3} denote  smooth embeddings of S 1 in 0Y representing the 

homotopy class in 0Y of each of the above weight elements of Z •  G. Choose a 
trivialization of the normal bundle of each o-i, and attach 2-handles to form the 
manifolds YL)~, h 2. The  cocore or transverse disk of each 2-handle is an (n + 1)- 
disk, and (YU~ ,h  2, cocore (h2))~-(D "+3, g~d"+~), where g~ : D"+I---~D "+3 is a 
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proper  smooth embedding. This is because YtA~, h 2 is contractible, with simply- 
connected boundary, and n + 3-->6. However,  no two of the three disk pairs 
(YU,,, h 2, ND "+1) are equivalent, because any diffeomorphism of pairs between 
them would restrict to a diffeomorphism on Y, inducing an isomorphism on 
~rl(0Y) taking one of the weight elements of Z x G to another, or its inverse. 

In [S], it is shown that (n + 1)-disk pairs (n >_2) can be constructed with an 
arbitrarily prescribed Alexander polynomial in a single dimension p (2--<p---n), 
and trivial Alexander polynomials elsewhere. Moreover,  these disk pairs have the 
property that "/ ' f l (Y)~--~-ff ' / ' i (0Y)~- '~/ ' / ' i (S  1) for i < p .  Thus, by taking the boundary 
connected sum of the above examples with these disk pairs, one obtains infinitely 
many distinct (n + 1)-disk exteriors, each with indeterminacy index s This 
proves 

T H E O R E M  2.1. For each n >-3, there exist infinitely many homeomorphically 
distinct (n + 1)-disk knot exteriors Y~, each with indeterminacy index s 

Remark.  The  analogue of Theorem 2.1 for n = 2 can be done in the topologi- 
cal category (non-PL embeddings). One takes Y = S ~ x (c * 2;3), where c * 2; 3 is 
the cone on 2;3, the Poincare' 3-sphere. Then Y is a topological manifold [Ca], 
and arguments of Scharlemann [Sc] can be used to prove that the various handle 
attachments give rise to different non-PL disk pairs (D 5, gD3). 

We can modify the above construction to increase the lower bound for the 
indeterminacy index. Consider the group 

G x G x G = (a, b, c, d, e, f[ a5 = b3 = (ab) 2, c5 = d3 = (cd) 2, e 5 =/ca = (el)2, 

ac = ca, ad = da, bc = cb, bd = db, ae = ea, af = fa, be = eb, bf = fb, 

ce = ec, cf = fc, de = ed, df  = fd}. 

Now G x G x G is finitely presented, and HI(G  x G x G) = H2(G x G x G) = 0, so 
by Kervaire [Ke], for n>-4  there exists a contractible manifold M "§ with 
~ r l ( O M ) ~ - G x G x G .  As before,  Y = S l x M ,  affd ~ r l ( O Y ) ~ - Z x G x G x G .  Since 
the center of Z x G x G x G is the product  of the center of each factor, we see 
that Z x G x G x G modulo its center is A5 x A5 x As. Then,  as before, tacf, tacef, 

tbdef, tace, tbdf, and tabcdef are all algebraically distinct since their projections 
modulo the center have orders 15, 10, 6, 5, 3, and 2, respectively. We have the 

following 

C O R O L L A R Y  2.2. For each n >-4, there exist infinitely many homeomorphi- 
cally distinct (n + 1)-disk knot exteriors Yi, each with indeterminacy index s Y~)>- 

6. 
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w An upper bound for the indeterminacy index 

Now that we have seen that in some cases the lower bound of ~ can be large, 
we are interested in finding upper bounds. Along these lines, we have the 
following 

T H E O R E M  3.1. Let y.+3 be an (n+ l)-disk knot exterior (n>-2). Then 
~(Y)-<21~r'l, where ]~r' I denotes the cardinality of the commutator subgroup ~r' of 
7r = r Y). 

Proof. Consider the disk pair (D "+3, gD"+a). Choose a trivialization G : D z x 
D "+1 ~ N(gD "+1) of the tubular neighborhood of the submanifold; thus G({0} x 
y ) = g ( y )  for y e D  "+1. We have that the exterior Y=D"+3-G(DaxD'~+a) .  
Regarding N(gD "+~) as a 2-handle attached to Y via the meridian attaching curve 
G(OD2x{0}), we have (D "+3, gD't+I)~(YLIG h2, cocore (hZ)). We now wish to 
study the number of different ways it is possible to attach a 2-handle to Y to 
produce D "+3. We first count the maximum number of possible isotopy classes in 
0 Y of attaching curves for a 2-handle which produce a contractible manifold after 
handle attachment is performed. If ~r=~r~(OY), and rr' is the commutator  
subgroup of 7r, we have the short exact sequence 

1 --* ~" --* ~r ---~ Z ---~ 1. (3.2) 

Denoting the generator of the infinite cyclic multiplicative group by t, we have a 
semi-direct product  structure for ~r, and once a splitting for (3.2) is chosen, we can 
write each element x ~ ~- uniquely as x = t~ where a is an integer and g ~ -rr'. By 
abuse of notation, let t"g represent an embedding of S 1 in the same homotopy 
class, and choose a trivialization of its normal bundle. In order for Y O ,.g h z to be 
acyclic, we must have a = • because Hi (Y;  Z)  is infinite cyclic on the generator 
t. In order  for Y U,og h 2 to be contractible, i . ( t"g) must be a weight element of 
rrx(Y), where i . :  "rrl(0Y)--~ 1h(Y) is the inclusion homomorphism. In order for 
0(Y U,.g h z) to be simply-connected, tag must be a weight element of ~r~(0Y). 
The upper bound we are aiming at is very crude, coming just from the homology 
condition (a = • so we are in fact counting the ways it is possible to complete Y 
to obtain an integral homology disk. The set of elements of 7rl(0Y) producing 
acyclic manifolds upon handle attachment is {t:~lg [ g ~ ~"}. But since the sign of 
the exponent  of t in an element of ~q(0Y) is reversed by changing the orientation 
of the attaching curve of h 2 (or equivalently, reversing the orientation on the 
cocore D"+~), the set of elements of ~r corresponding to possibly different 
manifold pairs is {tg [ g ~ ~r'}, a set of the cardinality of It'. Now since we are in the 
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dimension range (n + 2)>-4 for OY, homotopy of embedded one-spheres gives rise 
to isotopy, so the number of possible isotopy classes of attaching curves in OY 
giving rise to acyclic manifolds is bounded above by I~r'l. Now, given a rep- 
resenatative of an isotopy class of attaching curves in OY, there are precisely two 
ways to attach the 2-handle h 2, corresponding to the ~r~(SO)=Z2 ways of 
choosing a trivialization of the normal bundle of the curve. Hence the number of 
possible handle attachments yielding acyclic manifolds is bounded above by 2 I~r'l. 

COROLLARY 3.3. Suppose that y,+3 (n -> 2) is an (n + 1)-disk knot exterior, 
and that 1rI(OY)=Z. Then s and the two possibly different disk pairs are 
obtained, each from the other, by re-attaching the 2-handle corresponding to the 
normal bundle over the submanifold via the non-trivial element o[ 1h(SO). 

Corollary 3.3 yields an easy proof of the well-known result that there are at 
most two inequivalent n-knots with the same exterior: 

COROLLARY 3.4. ([B], [L-S], [Ka 1], [Sw]). Let X "§ (n->3) be an n- 
sphere exterior. Then ~(X) <- 2. Moreover, / / ( X  U ~ (D 2 • S"), {0} • S ' )  denotes a 
sphere pair obtained by sewing D2x  S" onto X via some trivialization of the 
S"-bundle over the meridian curve 3' = Six{*} CaX, then the possibly different 
sphere pair is (X  tJ.~ (D 2 x S') ,  {0} x S'O, where ~/ denotes the same meridian curve 
with different trivialization o[ the S"-bundle (i.e., D 2 x S "  is sewn in with a 
7rl(SO)-twist). 

Proof. There is a one-to-one correspondence between n-sphere knots and 
n-disk knots with unknotted boundary (n - 1)-sphere pair, obtained by removing 
an unknotted disk pair (the neighborhood of a point on the submanifold) from the 
sphere pair to obtain the required disk pair. An n-sphere knot and its correspond- 
ing n-disk knot have the same exterior X. But a X ~  S i x  S", and ~rl(aX)= Z, so 
by Corollary 2.4, ~ ( X ) -  2. That is, X (thought of as a disk exterior) determines at 
most two inequivalent disk pairs. Therefore, thinking of it as a sphere pair 
exterior, then s 2 as well. 

w Some questions 

1. Given a positive integer N, does there exist an (n + 1)-disk exterior Y with 
~(Y)->N? 

2. Is there an (n+  1)-disk exterior Y with s  +oo? 
3. If X is an n-sphere exterior and r Z, must if follow that ~(X)= 1? 
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